Estimation of photosynthetically active radiation under cloudy conditions
نویسنده
چکیده
Clouds are the largest modulators of the solar radiative flux reaching the Earth’s surface. The amount and type of cloud cover prevailing at a given time and location largely determines the amount and type of solar radiation received at the Earth’s surface. This cloud radiative forcing is different for the different solar spectral bands. In this work, we analysed the influence of cloud radiative forcing over the photosynthetically active radiation. Knowledge of the photosynthetically active radiation is necessary in different applications, but due to the absence of widespread measurements of this radiometric flux, it must be estimated from available variables. Cloudless sky parametric models compute the global photosynthetically active radiation at surface level by addition of its direct beam and diffuse components. To compute this flux under all sky conditions one must consider the influence of clouds. This could be done by defining a cloud transmittance function. We have developed such a cloud transmittance function considering three different types of clouds. The efficacy of the cloud radiative forcing scheme has been tested in combination with a cloudless sky parametric model using independent data sets. For this purpose, data recorded at two radiometric stations are used. The combination of an appropriate cloudless sky parametric model with the cloud transmittance scheme provides estimates of photosynthetically active radiation with mean bias deviation about 4% that is close to experimental errors. Comparisons with similar formulations of the cloud radiative effect over the whole solar spectrum shows the spectral dependency of the cloud radiative effect. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Changes in Physiological and Biochemical Parameters of Gourd (Cucurbita pepo L.) Two Varieties under Drought and UV-B Radiation. Nobar Hajihosseinlo*, Siavash Hosseini Sarghein and Rashid Jamei
It emerged recently that there is an inter-relationship between drought and Ultraviolet-B (UV-B) radiation in plant responses, in that both stresses provoke an oxidative burst. The objective of the present investigation was to study the effect of drought stress, UV-B radiation and the combined effects of UV-B and drought stresses on two cultivars of gourd seedling. The gourd plants were grown w...
متن کاملProductivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.
Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear o...
متن کاملPhotosynthetically active radiation: measurements and modelling
Photosynthetically-active radiation is a necessary input in applications dealing with plant physiology, biomass production and natural illumination in greenhouses. Unfortunately, a worldwide routine network for the measurement of photosynthetically-active radiation is not yet established and it is often calculated as a constant ratio of the broadband solar radiation. This ratio is affected by m...
متن کاملPhotosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products
[1] We describe a method that retrieves surface photosynthetically active radiation (PAR) and its direct and diffuse components from the Surface and Atmospheric Radiation Budget (SARB) product of Clouds and the Earth’s Radiant Energy System (CERES). The shortwave spectrum in the SARB Edition 2 is calculated in 15 bands, 4 of which are used to develop the PAR, in conjunction with the look-up tab...
متن کاملNew developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops
[1] The fraction of absorbed photosynthetically active radiation, fAPAR, is an important biophysical characteristic in models of gas exchange between the terrestrial boundary layer and the atmosphere, as well as in the analysis of vegetation productivity. Synoptic estimation of fAPAR has been performed by using NDVI as a linear proxy of fAPAR, despite the saturation of NDVI at fAPAR beyond 0.7....
متن کامل